
Fairy Light 3000

IntroducƟon

Control of 2 sets of high voltage (~30V) fairy lights and a clock/alarm.

Features
 Control of 2 sets of high voltage fairy lights
 Turbo mod – high voltage for extra bright lights
 MulƟple paƩerns with tweakable controls
 Clock with mulƟple displays.
 Alarm with snooze, rising alarm volume, Ɵme limit.
 Lights can be triggered by the alarm.
 Light level sensor
 USB programming port / Time Debug port for Ɵming debugging
 One press favorite light seƫng

Modes
There are 5 main screens which can be cycled through by pressing the MAIN buƩon.

Start Up
A splash screen appears during loading.

Clock
This is the main clock view.

It has 3 sub pages which are accessed by pressing the Sub buƩon.

If an alarm is set a bell icon is visible on the boƩom leŌ of the screen.

Date

This screen displays the Ɵme and the above it the date. The current light values and analog inputs are
visible on the right-hand side of the screen

Alarm
This screen displays the Ɵme and alarm. The current light values and analog inputs are visible on the
right-hand side of the screen

If no alarm is set, it will simply display ‘No Alarm’

If a alarm is set, then turning the dial will show 3 different views:

Alarm Time

the Ɵme alarm will sound

Remaining Time

Ɵme in HH:MM:SS unƟl the alarm will sound. Once the alarm is sounding, then this will display the
amount of Ɵme the alarm has been sounding for.

T-Minus

Number of seconds unƟl the alarm sounds. Inspired by the countdown in the film Alien. Once the alarm
is sounding, then this will display the amount of Ɵme the alarm has been sounding for.

Minimal
This display shows a minimal Ɵme display for minimal brightness whilst sleeping. Turning the dial will
show 5 different views:

HH:MM:SS

HH:MM

HH:MM with cumulaƟve verƟcal second bar

HH:MM with horizonal second bar

HH:MM with cumulaƟve horizonal second bar

Lights
This mode is where the lights paƩern can be selected and tweaked.

It has mulƟple subpages which are accessed by pressing the Sub buƩon.

The lights can be selected from the page which has the ‘Mode’ text. Turning the Dial will choose
between the 6 available lights:

Dark

No Lights

There are no seƫngs for this mode.

Solid

Solid Light

Seƫngs:

Brightness

Sets the brightness levels.

Lights

Select which of the 4 lights groups are visible.

Fade

Fades between the min and max values. The light groups of out of phase, the speed can be controlled.

Seƫngs:

Min Brightness

Sets the minimum brightness level.

Max Brightness

Sets the maximum brightness level.

Speed

Sets the speed of the animaƟon.

Light

The lights brightness is determined by the light level in the room.

Seƫngs:

Min Brightness

Sets the minimum brightness level.

Stars

Twinkles between the min and max values. the speed can be controlled as well as the probability of a
twinkle occurring.

Seƫngs:

Min Brightness

Sets the minimum brightness level.

Max Brightness

Sets the maximum brightness level.

Speed

Sets the speed of the animaƟon.

Probability

Sets the probability of a transiƟon occurring.

Flash

Rude on/off flashing. This is ideal for the alarm.

Seƫngs:

Speed

Sets the speed of the animaƟon.

Alarm
This is where the alarm can be set. There are 2 screens. Pressing the sub buƩon cycles between them
and turning the dial will change the value.

AcƟve

This is where the alarm can be toggled on and off.

Time

This is where the Ɵme for the alarm can be set.

Setup
There are approximately 20 user configurable seƫngs. This mode is where they can be set. Pressing the
sub buƩon cycles between them and turning the dial will change the value.

Turbo

This toggles turbo mode.

Favorite Light / Favorite Turbo

This set the favorite light and turbo value.

Sleep Timeout

Sets the numbers of seconds Ɵll the screen dims, if set to infinite it never dims

Clock set – Year/Month/Day/Hours/Minutes/Seconds

Six screen to set the clock Ɵme.

Second Tick

Set the volume of the second’s Ɵck.

Alarm Snooze

Set the how long the alarm snoozes for in minutes, can be set to No

Alarm Sound

Sets whether the alarm makes a noise.

Alarm Volume

Sets the volume of the alarm. Between 1 and 9. If Rise is selected, the volume will get louder as it
sounds.

Alarm Rise

This sets the number of seconds unƟl an increase in alarm volume occurs.

Alarm Light / Turbo

These 2 seƫngs set whether a light will be triggered by an alarm. Seƫng light to ‘No mod’ means no
light change will occur.

Alarm Limit

This limits how long the alarm will sound if not stopped.

Alarm Restore

If this is set to yes, aŌer the alarm is stopped, then the light will go back to the previous state before the
alarm started.

System Info

This displays the amount of free memory and the temperature of the RTC module.

Controls
Alarm
If the alarm is sounding, then the control takes on a different funcƟon.

Either the Main or the Sub buƩon will stop the alarm and not trigger the snooze feature if enabled

Turning the dial by more than a 1/3 of it’s travel will trigger the snooze feature is enabled, or stop the
alarm if snooze is not enabled.

Long Presses
If the buƩon are held in for more than a second, then they perform different funcƟons, and this
depending on which screen is displayed.

Clock and Lights screen
Long Press Main
This will toggle the favorite funcƟon.

If there are no lights on (i.e. Dark) then the configured favorite will be enabled

If there is a light on, then Dark mode will be selected.

Long Pres Sub

This will toggle the turbo features (same as the setup screen)

Alarm Screen
Long Press Main
This will start the alarm sounding, useless to check the volume level

Setup Screen

Long Press Main
This will save all the current seƫngs to EEPROM, so they will be available aŌer power cycling.

Long Press Sub
This will restore the factory default.

Note: Factory defaults can also be restored at boot Ɵme by holding down the Sub buƩon as the device
starts

Technical Details
Internals

The Arduino Nano is the brain of the device. This is connected to all the other parts:

 The controls inputs – the Dial and the two switches (All use analog input pins)
 The OLED screen uses the 4bit parallel interface mode.

o The OLED was modified to allow its brightness to be controlled, this is aƩached to a one
of the digital output of the Nano and uses PWM to set the brightness

 The LED driver chips (L293D) is used to drive the fairy lights.
 The Step-Up Regulator converts the 12V input into either 29V or 31V (depending on the relay

seƫng of the Voltage Selector board which is controlled by a pin on the Nano). This is the
normal vs turbo.

 The Real Time Clock module uses I2C to talk to the Nano
 The Light sensor an LDR connected directly to an analog input on the Nano

Rear Panel

Power
Power is center posiƟve 12V

Lights

This is 5 pib DIN socket.

Pins 3 and 5 connect to the 1st Fairy lights strip

Pins 1 and 4 connect to the 2nd Fairy lights strip

Pin 2 is unused

Alarm
This is a buzzer. It can get very loud!

USB
This is used for firmware updates. The device can be powered of this, but then the fairy lights do not
work

Time Debug

This is used for Ɵming the device (See details in Theory of OperaƟon).

Sleeve is ground.

Ring is the signal which controls the polarity of the LED driver.

Tip is the acƟve signal sent to the LED driver to enable the LEDs.

To make use of this, connected Ring and Tip to an oscilloscope.

Theory of OperaƟon
The applicaƟon runs in a loop, the first part of which is acƟng as a PWM Ɵming circuit for the LEDs and
the remaining Ɵme in which cycle is spent doing other tasks, such as the clock, alarm, buƩon handling,
effects updates etc.

The main loop does the following:

 Exec chunk (each chunk is round robined across different frames)
o Chunk 1:

 Get Time from RTC chip (slow!)
o Chunk 2:

 Check BuƩons
 Check Analog inputs

o Chunk 3:
 Create Time/Date string
 Sleep Checks
 Handle buƩon presses
 Check Alarm CondiƟons
 Fade LCD update
 Splash screen sequencing
 Screen manager updates

 Play alarm if sounding
 Update Current Effect
 Update OLED

The screen have a screen manager which has a list of screen sets, and each screen set has screen.

A screen is defined with a draw() and Ɵck() method and the manager controls change the screen sets,
and the screen sets control the screens.

Each screen also has a list of seƫng, which have draw() and Ɵck() methods

Timing
Each cycle is as long as the blue state below.

(The yellow is the acƟve signal (Ɵp), and blue the polarity (ring) and for the above #define SPIKE was
uncommented in the code.)

Looking at the yellow trace, the solid block as the start is where the PWM phase is handled, in the above
brightness is full (so about 2/3 of the full duty cycle is achievable), the remaining 1/3 is where all other
operaƟons occur.

In the code, this is broken in different chunks which can cycled through and handled on different frames
(for non-Ɵme criƟcal things)

The only things which happen per frame are the LED updates, and the updates to the OLED.

The OLED is so slow that it can’t be sent more than 1 character per frame (or for font changes, the font
data is send in groups of 4 bytes per frame)

The ‘Spikes’ visible on the yellow trace are put into the code at various places:

 AŌer the chunk processing
 AŌer the alarm/effect update
 AŌer The OLED update

On the leŌ of the trace the spikes are clearly visible, and the 3rd one is almost at the start of the new
cycle. This is the opƟmal balance point, where it almost touches. The worst thing to do is change the
view on the minimal screen as this does font changes which is the slowest op.

Leƫng the 3rd spike bleed into the next frame will cause the whole frame to be skipped and flickering
will be noƟceable on the LEDS.

In BunningFairyDriver2.ino the period of the cycle can be set here:

Values much larger than this will cause visible flickering on the LEDs and strobing on the OLED backlight.

If code is added which cause flickering then the maximum Ɵme the lights can be reduced (essenƟally
shortening the iniƟal yellow period, which gives more Ɵme to updates etc. by decreasing the number in
L293DLED.cpp The downside is the maximum brightness of the LEDs is reduced)

If possible, it is beƩer to move code into a new chunk to spread out the load across frames.

